工作及本文研究提供了方法. T.Furuta(2011 [7]利用Furuta不等式推廣J.C. Bourin與E. Ricard的工作. 原江濤(2012)[8]進(jìn)一步改進(jìn)T. Furuta 的工作, 并給出更加精細的估計. 本文正是借鑒以上工作, 得到了一些新的結果, 并利用共軛算子及凸性算子的性質(zhì)給出兩種經(jīng)濟模型的解釋.
2 預備知識
參考文獻
[1] M FUJII, Y O KIM, R NAKAMOTO. A characterization of convex functions and its application to operator monotone functions[J].Banach Journal of Mathematical Analysis,2014,8(2): 118-123.
[2] 劉衛鋒. 三參數區間數集成算子及決策應用[J].經(jīng)濟數學(xué),2014,31(4):96-101.
[3] T ANDO. Concavity of certain maps on positive definite matrices and applications to hadamard products[J]. Linear Algebra and its Applications, 1979, 26(4):203-241.
[4] L ZHOU, H CHEN, J LIU. Generalized multiple averaging operators and their applications to group decision making[J]. Group Decision and Negotiation, 2013, 22(2): 331-358.
[5] R. KADISON. A generalized Schwarz inequality and algebraic invariants for operator algebras[J]. Annals of Mathematics, 1952, 56(3):494-503.
[6] J BOURIN, E RICHARD. An asymmetric Kadison’s inequality[J]. Linear Algebra and its Applications, 2010, 433(3):499-510.
[7] T FURUTA. Around choi inequalities for positive linear maps[J]. Linear Algebra and its Applications, 2011, 434(1):14-17.
[8] J YUAN, G JI. Extensions of Kadison’s inequality on positive linear maps[J]. Linear Algebra and its Applications, 2012, 436(3):747-752.
[9] M CHOI. Some assorted inequalities for positive linear map onCalgebras[J]. Journal of Operator Theory, 1980, 4(2):271-285.
[10]R BHATIA. Positive Definite Matrices[M]. Princeton: Princeton University Press, 2007.
[11]F HENSEN, J PECARIC, I. PERIC. Jensen’s operator inequality and its converses[J]. Mathematica Scandinavica, 2007, 100(1):61-73.
[12]G PEDERSEN. Some operator monotone functions[J]. Proceedings of the Americal Mathematical Society, 1972, 36(1):309-310.
[13]T FURUTA.A≥B≥0assures(BrApBr)1q≥Bp+2rqforr≥0,p≥0,q≥1With(1+2r)q≥p+2r[J]. Proceedings of the Americal Mathematical Society, 1987, 101(1):85-88.