中考數學(xué)復習重點(diǎn)第1篇僅含有一些數和字母的乘法(包括乘方)運算的式子叫做單項式單獨的一個(gè)數或字母也是單項式。單項式中的數字因數叫做這個(gè)單項式(或字母因數)的數字系數,簡(jiǎn)稱(chēng)系數。當一個(gè)單項式的系數是1或下面是小編為大家整理的中考數學(xué)復習重點(diǎn)匯編,供大家參考。
僅含有一些數和字母的乘法(包括乘方)運算的式子叫做單項式單獨的一個(gè)數或字母也是單項式。
單項式中的數字因數叫做這個(gè)單項式(或字母因數)的數字系數,簡(jiǎn)稱(chēng)系數。
當一個(gè)單項式的系數是1或-1時(shí),“1”通常省略不寫(xiě)。
一個(gè)單項式中,所有字母的指數的和叫做這個(gè)單項式的次數。
如果在幾個(gè)單項式中,不管它們的系數是不是相同,只要他們所含的字母相同,并且相同字母的指數也分別相同,那么,這幾個(gè)單項式就叫做同類(lèi)單項式,簡(jiǎn)稱(chēng)同類(lèi)項所有的常數都是同類(lèi)項。
1、多項式
有有限個(gè)單項式的代數和組成的式子,叫做多項式。
多項式里每個(gè)單項式叫做多項式的項,不含字母的項,叫做常數項。
單項式可以看作是多項式的特例
把同類(lèi)單項式的系數相加或相減,而單項式中的字母的乘方指數不變。
在多項式中,所含的不同未知數的個(gè)數,稱(chēng)做這個(gè)多項式的元數經(jīng)過(guò)合并同類(lèi)項后,多項式所含單項式的個(gè)數,稱(chēng)為這個(gè)多項式的項數所含個(gè)單項式中最高次項的次數,就稱(chēng)為這個(gè)多項式的次數。
2、多項式的值
任何一個(gè)多項式,就是一個(gè)用加、減、乘、乘方運算把已知數和未知數連接起來(lái)的式子。
3、多項式的恒等
對于兩個(gè)一元多項式f(x)、g(x)來(lái)說(shuō),當未知數x同取任一個(gè)數值a時(shí),如果它們所得的值都是相等的,即f(a)=g(a),那么,這兩個(gè)多項式就稱(chēng)為是恒等的記為f(x)==g(x),或簡(jiǎn)記為f(x)=g(x)。
性質(zhì)1如果f(x)=g(x),那么,對于任一個(gè)數值a,都有f(a)=g(a)。
性質(zhì)2如果f(x)=g(x),那么,這兩個(gè)多項式的個(gè)同類(lèi)項系數就一定對應相等。
4、一元多項式的根
一般地,能夠使多項式f(x)的值等于0的未知數x的值,叫做多項式f(x)的根。
重心:重心是三角形三邊中線(xiàn)的交點(diǎn)。
三角形的重心的性質(zhì):
重心到頂點(diǎn)的距離與重心到對邊中點(diǎn)的距離之比為2:1。
重心和三角形3個(gè)頂點(diǎn)組成的3個(gè)三角形面積相等。
重心到三角形3個(gè)頂點(diǎn)距離的平方和最小。
在平面直角坐標系中,重心的坐標是頂點(diǎn)坐標的算術(shù)平均,即其坐標為((X1+X2+X3)/3,(Y1+Y2+Y3)/3);
空間直角坐標系——橫坐標:(X1+X2+X3)/3縱坐標:(Y1+Y2+Y3)/3豎坐標:(Z1+Z2+Z3)/3
重心和三角形3個(gè)頂點(diǎn)的連線(xiàn)的任意一條連線(xiàn)將三角形面積平分。
重心是三角形內到三邊距離之積最大的點(diǎn)。
1、多項式的加、減法
2、多項式的乘法
單項式相乘,用它們系數作為積的系數,對于相同的字母因式,則連同它的指數作為積的一個(gè)因式。
3、多項式的乘法
多項式與多項式相乘,先用一個(gè)多項式等每一項乘以另一個(gè)多項式的各項,再把所得的積相加。
常用乘法公式
公式I平方差公式
(a+b)(a-b)=a^2-b^2
兩個(gè)數的和與這兩個(gè)數的差的積等于這兩個(gè)數的平方差。
外心:是三角形三條邊的垂直平分線(xiàn)的交點(diǎn),即外接圓的圓心。
外心定理:三角形的三邊的垂直平分線(xiàn)交于一點(diǎn)。該點(diǎn)叫做三角形的外心。
三角形的外心的性質(zhì):
三角形三條邊的垂直平分線(xiàn)的交于一點(diǎn),該點(diǎn)即為三角形外接圓的圓心;
2三角形的外接圓有且只有一個(gè),即對于給定的三角形,其外心是唯一的,但一個(gè)圓的內接三角形卻有無(wú)數個(gè),這些三角形的外心重合;
銳角三角形的外心在三角形內;
鈍角三角形的外心在三角形外;
直角三角形的外心與斜邊的中點(diǎn)重合。
在△ABC中
∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA
△ABC=abc/4R
判定1:定義,有一個(gè)角為90°的三角形是直角三角形。
判定2:判定定理:以a、b、c為邊的三角形是以c為斜邊的直角三角形。如果三角形的三邊a,b,c滿(mǎn)足a2+b2=c2,那么這個(gè)三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一個(gè)三角形30°內角所對的邊是某一邊的一半,則這個(gè)三角形是以這條長(cháng)邊為斜邊的直角三角形。
判定4:兩個(gè)銳角互為余角(兩角相加等于90°)的三角形是直角三角形。
判定5:若兩直線(xiàn)相交且它們的斜率之積互為負倒數,則兩直線(xiàn)互相垂直。那么
判定6:若在一個(gè)三角形中一邊上的中線(xiàn)等于其所在邊的一半,那么這個(gè)三角形為直角三角形。
判定7:一個(gè)三角形30°角所對的邊等于這個(gè)三角形斜邊的一半,則這個(gè)三角形為直角三角形。(與判定3不同,此定理用于已知斜邊的三角形。)